If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2-160x-400=0
a = 17; b = -160; c = -400;
Δ = b2-4ac
Δ = -1602-4·17·(-400)
Δ = 52800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52800}=\sqrt{1600*33}=\sqrt{1600}*\sqrt{33}=40\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-40\sqrt{33}}{2*17}=\frac{160-40\sqrt{33}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+40\sqrt{33}}{2*17}=\frac{160+40\sqrt{33}}{34} $
| -8x-5+6x=17-3x | | -8x-5+6x=17-3 | | -8x-5+16x=17-3x | | 3.65–7.4x+1.12=21.76 | | (x+5)^2=34 | | (x+5)^2=24 | | 3x-(5×2x)=9 | | 2x-6=7x-15 | | x^2=49/29 | | 5x+3x+17=-12x+3 | | 1/2+n=2/3 | | Y=5x+10x-23 | | 4^x^2=2^x | | 9y-17=7y-26 | | .5=(75/x) | | 20y+14=7y-12 | | 7y-9=3y+12 | | E^x=3x^2 | | .5=75/x | | 7x+12=3x-10 | | 7x12=3x-10 | | 2x-17=6x-32 | | 1/4=57/x | | -10=8-9x | | 3x-2=8x-8 | | -18.4=-6.3x | | -4z+5-2=5 | | 3x+27=455 | | 19x+4=14x=19 | | 12x+7=8x+3 | | 4x+2(x-5)=15 | | 16x^2+47x-30=0 |